Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fa-Hui Li, Han-Dong Yin,* Gang Li and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail: handongyin@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
Disorder in main residue
R factor $=0.042$
$w R$ factor $=0.117$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tri-n-butyl(5-chloro-6-hydroxypyridine-3-carboxylato)tin(IV)

The crystal structure of the title complex, $\left[\mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{3}-\right.\right.$ ClNO_{3})], possesses an infinite two-dimensional polymeric chain structure in the solid state, resulting from strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The Sn atom is five-coordinate with a distorted trigonal bipyramidal geometry.

Comment

The title complex, (I), consists of three butyl and one 5-chloro-6-hydroxypyridine-3-carboxylate group bonded to the Sn atom (Fig. 1) and has an infinite one-dimensional polymeric chain structure (Fig. 2), due to the $\mathrm{Sn} 1 \cdots \mathrm{O}^{\mathrm{i}}$ [symmetry code: (i) $x, y+1, z]$ distance of 2.537 (4) \AA, compared to the van der Waals sum of $4.0 \AA$ (Vollano et al., 1984).

(I)

The Sn atom has a distorted trigonal-bipyramidal geometry, with atoms O 1 and $\mathrm{O} 3^{\mathrm{i}}$ in axial positions and C atoms of the three butyl groups in equatorial positions. The distortions away from the ideal trigonal-bipyramidal geometry are not along the Berry coordinate (Hämäläinen \& Turpeinen, 1987) and are reflected by the bond angles around the Sn atom (Table 1). The angle $\mathrm{O} 1-\mathrm{Sn} 1 \cdots \mathrm{O}^{\mathrm{i}}\left[178.21(19)^{\circ}\right]$ deviates from linearity by 1.87°. The sum of the $\mathrm{C} 15-\mathrm{Sn} 1-\mathrm{C} 7$ [126.7 (3) ${ }^{\circ}$], C15-Sn1-C11 [115.1 (3) ${ }^{\circ}$] and $\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{C} 11$ [115.1 (3) ${ }^{\circ}$] angles is 356.9°, which shows that these atoms are not coplanar.

The coordination geometry of the Sn atom and the molecular structure of (I) are normal (Xie et al., 1991). The central Sn atom is not coordinated by the N atom of the 5-chloro-6hydroxynicotinic acid, which is different from the triphenyltin 4-picolinate (Yin et al., 2002).

Strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) between O atoms of the carboxylate groups and $\mathrm{H}(\mathrm{N})$ atoms of the pyridine rings result in the formation of two-dimensional polymeric sheets lying in the $b c$ plane (Fig. 2).

Experimental

A mixture of tri- n-butyltin oxide ($596.1 \mathrm{mg}, 2.0 \mathrm{mmol}$) and 5-chloro-6-hydroxynicotinic acid ($347.1 \mathrm{mg}, 2.0 \mathrm{mmol}$) in benzene (80 ml) was heated under reflux for 8 h . The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (1:1) (yield $712.2 \mathrm{mg}, 76 \%$; m.p. 430 K). Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{29}$ CINSn: C $46.84, \mathrm{H} 6.33, \mathrm{~N} 3.30 \%$; found: C 46.82, H 6.36, N 3.38\%.

Crystal data

```
\(\left[\mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClNO}_{3}\right)\right]\)
\(M_{r}=462.57\)
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
\(a=8.825(2) \AA\)
\(b=10.823\) (3) \(\AA\)
\(c=22.592\) (6) \(\AA\)
\(V=2157.9(10) \AA^{3}\)
\(Z=4\)
\(D_{x}=1.424 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.634, T_{\text {max }}=0.807$
11314 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0634 P)^{2}\right. \\
& \quad+1.3585 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=1.30 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.65 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { 2193 Friedel pairs } \\
& \text { Flack parameter: }-0.05(5)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Sn1-C15	$2.119(7)$	$\mathrm{Sn} 1-\mathrm{O} 1$	$2.146(4)$
$\mathrm{Sn} 1-\mathrm{C} 7$	$2.133(6)$	$\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}$	$2.537(4)$
$\mathrm{Sn} 1-\mathrm{C} 11$	$2.143(7)$	$\mathrm{O} 3-\mathrm{Sn} 1^{\mathrm{ii}}$	$2.537(4)$
$\mathrm{C} 15-\mathrm{Sn} 1-\mathrm{C} 7$	$126.7(3)$	$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{O} 1$	$92.7(3)$
$\mathrm{C} 15-\mathrm{Sn} 1-\mathrm{C} 11$	$115.1(3)$	$\mathrm{C} 15-\mathrm{Sn} 1-\mathrm{O} 3^{\mathrm{i}}$	$81.9(2)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{C} 11$	$115.1(3)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}$	$82.4(2)$
$\mathrm{C} 15-\mathrm{Sn} 1-\mathrm{O} 1$	$98.1(2)$	$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}$	$88.9(3)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O} 1$	$96.2(2)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}$	$178.21(19)$

Symmetry codes: (i) $x, y-1, z$; (ii) $x, y+1, z$.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}_{2}{ }^{\text {iii }}$	0.86	1.95	$2.781(8)$	167

Symmetry code: (iii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$.

When the crystal structure was solved, atoms C17 and C18 were found to be disordered. During the refinement proccess with isotropic displacement parameters, the occupancies of the disordered atoms

The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probalitity level. H atoms and the minor disorder component have been omitted for clarity.

Figure 2
The packing, viewed approximately down the c axis. Hydrogen bonds are indicated by dashed lines. H atoms and the minor disorder component have been omitted for clarity.
were refined. These site-occupancy factors were fixed as $\mathrm{C} 17=0.80$, $\mathrm{C}_{17}{ }^{\prime}=0.20, \mathrm{C} 18=0.80$ and $\mathrm{C}_{1} 8^{\prime}=0.20$ during the anisotropic refinement. H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93,0.96$ and $0.97 \AA$ for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ where $x=1.5$ for methyl H and $x=1.2$ for all other H atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We acknowledge financial support from the Shandong Province Science Foundation and the State Key Laboratory of Crystal Material, Shandong University, China.

References

Bruker (1998). SMART, SAINT and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hämäläinen, R. \& Turpeinen, U. (1987). J. Organomet. Chem. 333, 323-327.

metal-organic papers

Sheldrick, G. M.(1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen,

Germany.

Vollano, J. F., Day, R. O. \& Holmes, R. R. (1984). Organometallics, 3, 745-750.

Xie, Q. L., Xu, X. H., Wang, H. G., Yao, X. K., Wang, R. J., Zhang, Z. G. \& Hu, J. M. (1991). Acta Chim. Sin. 49, 1085-1093.

Yin, H. D., Wang, C. H., Wang, Y., Ma, C. L., Liu, G. F. (2002). Chin. J. Org. Chem. 22, 575-581.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

